

Cryptographic Building Blocks

CS 858

Christian Henrich | October 5, 2010

INSTITUTE OF CRYPTOGRAPHY AND SECURITY

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association

www.kit.edu

《日》 《聞》 《臣》 《臣》

Textbook RSA

KEYGEN (1) choose
$$p, q \xleftarrow{R} \mathbb{P}$$

(2) set $n := p \cdot q$
(3) find e, d with $e \cdot d \equiv 1 \mod \varphi(n)$
(4) $pk = (e, n), sk = d$
ENC $(pk, m) \ c \equiv m^e \mod n$
DEC $(sk, c) \ m \equiv c^d \mod n$

Public Key Encryption •••••• Christian Henrich – CS 858 Zero Knowledge Proofs October 5, 2010 2/12

Э

990

<ロト < 団ト < 臣ト < 臣ト

Homorphic Property

Homorphic Property

$$ENC(pk, m_1) \cdot ENC(pk, m_2) \equiv m_1^e \cdot m_2^e$$

$$\equiv (m_1 \cdot m_2)^e$$

$$\equiv ENC(pk, m_1 \cdot m_2)$$

Problem: Textbook RSA is deterministic.

Public Key Encryption •••••• Christian Henrich – CS 858 Commitments

Selective Credentials o Zero Knowledge Proofs October 5, 2010 3/12

3

nan

イロト イポト イヨト イヨト

ElGamal

1 multiplicative group (G, \cdot) with generator g KeyGen 2 choose $x \leftarrow \{1, \ldots, |G|\}$ 3 set $y := q^x$ \bigcirc pk = y, sk = xENC(pk, m) $r \leftarrow R \{1, \ldots, |G|\}, (c_1, c_2) = (g^r, y^r \cdot m)$ $DEC(sk, (c_1, c_2)) \quad m = c_2 \cdot (c_1^x)^{-1}$

Public Key Encryption 00000 Christian Henrich - CS 858 Commitments

Selective Credentials

 $\Xi \to 0$ Zero Knowledge Proofs 4/12

DQ P

October 5, 2010

• □ ▶ • □ ▶ • □ ▶

Homorphic Properties

Homorphic Properties

$$\mathsf{ENC}(pk, m_1) \cdot \mathsf{ENC}(pk, m_2) = (g^{r_1}, y^{r_1} \cdot m_1) \cdot (g^{r_2}, y^{r_2} \cdot m_2) \equiv (g^{r_1+r_2}, y^{r_1+r_2} \cdot m_1 \cdot m_2) \equiv \mathsf{ENC}(pk, m_1 \cdot m_2) = (g^r, n \cdot y^r \cdot m) \equiv \mathsf{ENC}(pk, n \cdot m)$$

Problem: ElGamal is not deterministic, but malleable.

 Public Key Encryption ○○○●○○
 Commitments ○○○
 Selective Credentials ○
 Zero Knowledge Proofs ○

 Christian Henrich – CS 858
 October 5, 2010
 5/12

RSA Signatures

KEYGEN (1) choose
$$p, q \leftarrow \mathbb{P}$$

(2) set $n := p \cdot q$
(3) find e, d with $e \cdot d \equiv 1 \mod \varphi(n)$
(4) $sk = e, vk = (d, n)$
SIGN $(sk, m) \ s \equiv m^e \mod n$
VERIFY $(vk, m, s) \ m \stackrel{?}{\equiv} c^d \mod n$

Public Key Encryption 00000 Christian Henrich – CS 858 Image: A math a math

Zero Knowledge Proofs October 5, 2010 6/12

3

5900

Э

- **(1)** Alice chooses masking *c* and sends $\tilde{m} = c^d \cdot m$ to Bob.
- 2 Bob signs \widetilde{m} and sends signature $\widetilde{s} = \widetilde{m}^e$ to Alice.
- Alice removes masking from $\tilde{s} = \tilde{m}^e = c^{ed} \cdot m^e$ and obtains $s = \tilde{s} \cdot c^{-1} = m^e$ as a signature for *m*.

DQ P

Commitment Schemes

COMMIT Commit to a value *m*. OPEN Open a commitment *c* to a value *m*.

Public Key Encryption 000000 Christian Henrich – CS 858 Commitments ●○○ Selective Credentials o

・ ー ホート ・ 日 ト ・

Zero Knowledge Proofs October 5, 2010 8/12

nar

 $\exists \rightarrow$

Commitment Scheme from Hash Function

SETUP Choose keyed hash function $h(\cdot, \cdot)$.

COMMIT Commit to *m* by choosing randomness *r* and sending c = h(r, m).

OPEN Send preimages r, m to commitment c.

Christian Henrich - CS 858

Pedersen Commitments

SETUP Choose multiplicative group (G, \cdot) with generators g, h.

COMMIT Commit to *m* by by choosing randomness *r* and sending $c = g^r \cdot h^m$.

OPEN Send *m* and *r*.

Properties

binding *dlog-assumption:* $\log_g h$ is hard to compute hiding unconditionally binding

Public Key Encryption 00000 Christian Henrich – CS 858 Commitments

Zero Knowledge Proofs October 5, 2010 10/12

nac

・ロト ・ 同ト ・ ヨト ・ ヨト

The signed credential contains commitments to values. The issuer signs the credential blind.

Name	Сомміт(Christian Henrich)		
Address	Сомміт()		
Age	Сомміт()		
Date of Birth	Сомміт()		
	s = SIGN(sk, credential)		

J. Holt, K. Seamus: Selective Disclosure Credential Sets

		< □ >		き りょで
Public Key Encryption	Commitments	Selective Credentials	Zero Knowledge Proofs	
Christian Henrich - CS 858		•	October 5, 2010	11/12

Zero Knowledge Proofs

Proofer Peggy knows an isomorphism Φ between two graphs G_0 and G_1 and wants to prove this to verifier Victor.

Protocol

- **1** Peggy chooses isomorphism $\Psi \xleftarrow{R}$ and sends $G' = \Psi(G_0)$ to Victor.
- ② Victor chooses challenge bit $b \leftarrow {R \atop l} \{0, 1\}$.
 - b = 0 Peggy sends Ψ to Victor. b = 1 Peggy sends $\Psi \circ \Phi$ to Victor.

After k runs Victor is convinced Peggy knows Φ without getting any more information.

 Public Key Encryption
 Commitments
 Selective Credentials
 Zero Knowledge Proofs

 00000
 00
 0
 0

 Christian Henrich - CS 858
 October 5, 2010
 12/12